Conférences
Sommaire
- MLOps à l’échelle : Plateformiser le registre et l’inférence pour accélérer les déploiements
- Optimisation de performance : bénéfice ou sacrifice ?
- La CI/CD à l’heure du Machine Learning
- Dessine-moi une architecture de Data Science
- L’histoire d’une architecture émergente
- MLOps : Mise en production, et après
- Interprétabilité des Systèmes de Data Science
- Tutoriel sur la librairie dataPreparation
MLOps à l’échelle : Plateformiser le registre et l’inférence pour accélérer les déploiements
L’intelligence artificielle est aujourd’hui au cœur de toutes les organisations. Les plateformes de données facilitent la création de modèles performants, mais le déploiement reste souvent artisanal, nécessitant la recréation de registres, d’API et de runners pour chaque projet. La gouvernance à l’échelle des modèles, exigée par l’IA Act, est fastidieuse.
Cette présentation prospective propose un concept pour standardiser et automatiser ces étapes en quelques clics ou lignes de commande : la model platform.
Ce talk explore ce que je pense être l’avenir du MLOps : des model platforms intégrant registre de modèles, déploiement, A/B testing et production shadow en toute simplicité. D’ici 2-3 ans, tous les fournisseurs de cloud offriront cette capacité.
Une démonstration en direct d’une plateforme basée sur des technologies open source (MLflow, Kubernetes) montrera comment un modèle peut être mis en production en moins de 5 minutes grâce à ces technologies.
À l’issue de cette présentation, vous comprendrez l’utilité d’une model platform, identifierez ses fonctionnalités principales, et découvrirez une proposition d’implémentation. De quoi accélérer tous vos projets d’IA.
📍 Talk donné à :
- Data Days Lille, mars 2025, Lille : slides
Tags :
- MLOps
- Architecture
- Prospective
Optimisation de performance bénéfice ou sacrifice ?
⚡ Plus le code est rapide, plus le code est bon.
Plutôt que d’ajouter des ressources de calculs, des technologies, réfléchissez à l’architecture, au code et au stockage des données pour économiser les dressources matériels.
🚀 Les premières optimisations relèvent des bonnes pratiques que tout le monde devrait savoir faire, les suivantes sont sacrificielles : elles dégradent la lisibilité, la maintenabilité du code. Pensé comme une déclinaise concrète de la loi de Eroom proposé par Tristan Nitot, ce talk, commencera avec un exemple de code bien mal codé comme nous l’avons tous déjà fait, puis au fil des optimisations, nous verrons bénéfices et sacrifices à faire pour aller toujours plus vite.
📍 Talk donné à :
- Touraine Tech, Février 2025, Tour
- Snow Camp, Janvier 2025, Grenoble : slides
- Breizh Camp, Juin 2024, Rennes : slides, vidéo
Tags :
- Data
- Architecture
- Numérique responsable
La CI/CD à l’heure du Machine Learning
La CI/CD est un outil bien connu du logiciel pour construire et déployer des artefacts. En Machine Learning, c’est un peu particulier :
🔢 En plus de devoir construire et déployer du code, il faut gérer l’artefact modèle.
🗓️ Le build du modèle correspond à son entraînement, il ne se fait pas que quand le code change, il peut également être déclenché par un changement dans les données.
🏋️♀️ Le code pèse généralement quelques Mo, le modèle peut lui peser jusqu’à plusieurs Go.
Ces trois particularités font que le processus de construction et de déploiement doit être repensé.
📍 Talk donné à :
- Pycon Lithuania, avril 2024, Vilnius : slides en anglais, vidéo
- Meetup Crafting Data Science #11, Novembre 2023, Paris avec Sofia Calcagno
Tags :
- MLOps
- Architecture
Dessine-moi une architecture de Data Science
Un talk itératif durant lequel Sofia et Emmanuel-Lin dessine une architecture de Data Science au fil des évolutions des besoins métiers.
📍 Talk donné à :
- La Duck Conf, Mars 2022, Paris, avec Sofia Calcagno : vidéo
- Meetup crafting Data Science #9, Novembre 2022, Paris, avec Sofia Calcagno : vidéo
Tags :
- Architecture
- Data Science
- MlOps
L’histoire d’une architecture émergente
Un modèle de Data Science en production au jour 1, une architecture émergente, des clients satisfaits, une équipe sereine.
C’est l’histoire racontée dans ce talk, celle d’un projet d’architecture émergente qui a permis de gagner des centaines de milliers d’euros dès la première journée de développement. C’est l’histoire d’un MVP vraiment minimaliste.
📍 Talk donné à :
- La Duck Conf, février 2021, remote : slides, vidéo
- Comptoir Octo, la même histoire sous l’angle métier, avec Marc Frignet : vidéo
Tags :
- Architecture
- Data Science
MLOps : Mise en production, et après ?
Une fois en production, il faut monitorer son système modèle, a part un drift de donnée dans tous les sens, comment choisir les bonnes métriques à suivre dans un système qui contient beaucoup d’incertitudes.
📍 Talk donné à :
- La Duck Conf, janvier 2020, Paris, avec Mehdi Houacine : vidéo
- Meetup Crafting Data Science, février 2022, Paris, avec Mehdi Houacine : slides
Tags :
- MLOps
- Data Science
- Monitoring
Interprétabilité des Systèmes de Data Science
Le besoin d’interprétabilité sur les systèmes de Data Science est clairement identifié mais pas toujours clairement défini.
Ce talk, vise à reposer le pourquoi, pour qui, pour quoi et le comment de l’interprétabilité de ces systèmes.
📍 Talk donné à :
- L’espace éthique d’Île de France, février 2020, Paris : vidéo
- La matinale Ethical by Design d’Octo, novembre 2019, Paris : vidéo, compte rendu dans la press écrit par Christophe Auffray
Tags :
- Data Science
- Interprétabilité
- Numérique responsable
Tutoriel sur la librairie dataPreparation
Présentation de la librairie R open source que j’ai développé et maintient depuis de nombreuses années pour faire de la préparation de données éfficiente.
📍 Talk donné à :
- Data Science Conférence Europe, Novembre 2021, (remote)
- Meetup R addicts Paris, Aout 2018 (Paris) : slides
Tags :
- Data Engineering
- R